3.502 \(\int \cot ^{\frac{7}{2}}(c+d x) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=103 \[ -\frac{2 a (B+i A) \cot ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{2 a (A-i B) \sqrt{\cot (c+d x)}}{d}+\frac{2 \sqrt [4]{-1} a (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d} \]

[Out]

(2*(-1)^(1/4)*a*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d + (2*a*(A - I*B)*Sqrt[Cot[c + d*x]])/d - (
2*a*(I*A + B)*Cot[c + d*x]^(3/2))/(3*d) - (2*a*A*Cot[c + d*x]^(5/2))/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.235965, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.147, Rules used = {3581, 3592, 3528, 3533, 208} \[ -\frac{2 a (B+i A) \cot ^{\frac{3}{2}}(c+d x)}{3 d}+\frac{2 a (A-i B) \sqrt{\cot (c+d x)}}{d}+\frac{2 \sqrt [4]{-1} a (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(2*(-1)^(1/4)*a*(A - I*B)*ArcTanh[(-1)^(3/4)*Sqrt[Cot[c + d*x]]])/d + (2*a*(A - I*B)*Sqrt[Cot[c + d*x]])/d - (
2*a*(I*A + B)*Cot[c + d*x]^(3/2))/(3*d) - (2*a*A*Cot[c + d*x]^(5/2))/(5*d)

Rule 3581

Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
 + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(d
 + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ
[n]

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3533

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(2*c^2)/f, S
ubst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^{\frac{7}{2}}(c+d x) (a+i a \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=\int \cot ^{\frac{3}{2}}(c+d x) (i a+a \cot (c+d x)) (B+A \cot (c+d x)) \, dx\\ &=-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d}+\int \cot ^{\frac{3}{2}}(c+d x) (-a (A-i B)+a (i A+B) \cot (c+d x)) \, dx\\ &=-\frac{2 a (i A+B) \cot ^{\frac{3}{2}}(c+d x)}{3 d}-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d}+\int \sqrt{\cot (c+d x)} (-a (i A+B)-a (A-i B) \cot (c+d x)) \, dx\\ &=\frac{2 a (A-i B) \sqrt{\cot (c+d x)}}{d}-\frac{2 a (i A+B) \cot ^{\frac{3}{2}}(c+d x)}{3 d}-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d}+\int \frac{a (A-i B)-a (i A+B) \cot (c+d x)}{\sqrt{\cot (c+d x)}} \, dx\\ &=\frac{2 a (A-i B) \sqrt{\cot (c+d x)}}{d}-\frac{2 a (i A+B) \cot ^{\frac{3}{2}}(c+d x)}{3 d}-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d}+\frac{\left (2 a^2 (A-i B)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-a (A-i B)-a (i A+B) x^2} \, dx,x,\sqrt{\cot (c+d x)}\right )}{d}\\ &=\frac{2 \sqrt [4]{-1} a (A-i B) \tanh ^{-1}\left ((-1)^{3/4} \sqrt{\cot (c+d x)}\right )}{d}+\frac{2 a (A-i B) \sqrt{\cot (c+d x)}}{d}-\frac{2 a (i A+B) \cot ^{\frac{3}{2}}(c+d x)}{3 d}-\frac{2 a A \cot ^{\frac{5}{2}}(c+d x)}{5 d}\\ \end{align*}

Mathematica [B]  time = 2.96737, size = 263, normalized size = 2.55 \[ \frac{a \sin ^2(c+d x) (\cot (c+d x)+i) (\cos (d x)-i \sin (d x)) (A \cot (c+d x)+B) \left (-\frac{2 i e^{-i c} (A-i B) \tanh ^{-1}\left (\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )}{\sqrt{\frac{-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{\frac{i \left (1+e^{2 i (c+d x)}\right )}{-1+e^{2 i (c+d x)}}}}-\frac{1}{15} (\cos (c)-i \sin (c)) \sqrt{\cot (c+d x)} \csc ^2(c+d x) (5 (B+i A) \sin (2 (c+d x))+3 (6 A-5 i B) \cos (2 (c+d x))-12 A+15 i B)\right )}{d (A \cos (c+d x)+B \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(7/2)*(a + I*a*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(a*(I + Cot[c + d*x])*(B + A*Cot[c + d*x])*(Cos[d*x] - I*Sin[d*x])*Sin[c + d*x]^2*(((-2*I)*(A - I*B)*ArcTanh[S
qrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]])/(E^(I*c)*Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((
2*I)*(c + d*x)))]*Sqrt[(I*(1 + E^((2*I)*(c + d*x))))/(-1 + E^((2*I)*(c + d*x)))]) - (Sqrt[Cot[c + d*x]]*Csc[c
+ d*x]^2*(Cos[c] - I*Sin[c])*(-12*A + (15*I)*B + 3*(6*A - (5*I)*B)*Cos[2*(c + d*x)] + 5*(I*A + B)*Sin[2*(c + d
*x)]))/15))/(d*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [C]  time = 0.474, size = 2945, normalized size = 28.6 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

-1/15*a/d*2^(1/2)*(-15*B*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(
1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+
c))^(1/2)+18*A*cos(d*x+c)^3*2^(1/2)-15*A*cos(d*x+c)*2^(1/2)-15*B*cos(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d
*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos
(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-15*I*A*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(
1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-
(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)+15*I*A*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1
)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d
*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-15*I*B*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*
x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(
1/2),1/2+1/2*I,1/2*2^(1/2))-15*A*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin
(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c)
)^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*B*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x
+c))/sin(d*x+c))^(1/2)-15*B*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+
c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/
2),1/2+1/2*I,1/2*2^(1/2))+15*B*cos(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d
*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/
sin(d*x+c))^(1/2)+5*B*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)-15*I*B*cos(d*x+c)^3*2^(1/2)+15*I*B*cos(d*x+c)*2^(1/2)+15
*A*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/
sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*I*B*cos(d
*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x
+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*I*A*
cos(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d
*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)-15*I*A*cos(d*
x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+
c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*I*B*c
os(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin
(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-15*
I*A*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos
(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)+15*I*A*cos(
d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+
c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-15*I*B*c
os(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d
*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*I*
A*cos(d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos
(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)-15*I*A*cos(
d*x+c)^3*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*
x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-15*A*c
os(d*x+c)^2*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin
(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15*
B*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-si
n(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+15
*A*cos(d*x+c)*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-s
in(d*x+c))/sin(d*x+c))^(1/2)*EllipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))-1
5*B*((cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*EllipticF((-(cos(d*x+c)-1-s
in(d*x+c))/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)+15*B*((cos(d*x+c)-1+si
n(d*x+c))/sin(d*x+c))^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*(-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2)*El
lipticPi((-(cos(d*x+c)-1-sin(d*x+c))/sin(d*x+c))^(1/2),1/2+1/2*I,1/2*2^(1/2))+5*I*A*cos(d*x+c)^2*sin(d*x+c)*2^
(1/2))*(cos(d*x+c)/sin(d*x+c))^(7/2)*sin(d*x+c)/cos(d*x+c)^4

________________________________________________________________________________________

Maxima [B]  time = 1.55369, size = 259, normalized size = 2.51 \begin{align*} \frac{15 \,{\left (2 \, \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} + \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt{2}{\left (\left (i - 1\right ) \, A + \left (i + 1\right ) \, B\right )} \arctan \left (-\frac{1}{2} \, \sqrt{2}{\left (\sqrt{2} - \frac{2}{\sqrt{\tan \left (d x + c\right )}}\right )}\right ) + \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right ) - \sqrt{2}{\left (-\left (i + 1\right ) \, A + \left (i - 1\right ) \, B\right )} \log \left (-\frac{\sqrt{2}}{\sqrt{\tan \left (d x + c\right )}} + \frac{1}{\tan \left (d x + c\right )} + 1\right )\right )} a + \frac{8 \,{\left (15 \, A - 15 i \, B\right )} a}{\sqrt{\tan \left (d x + c\right )}} + \frac{40 \,{\left (-i \, A - B\right )} a}{\tan \left (d x + c\right )^{\frac{3}{2}}} - \frac{24 \, A a}{\tan \left (d x + c\right )^{\frac{5}{2}}}}{60 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

1/60*(15*(2*sqrt(2)*((I - 1)*A + (I + 1)*B)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(
(I - 1)*A + (I + 1)*B)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) + sqrt(2)*(-(I + 1)*A + (I - 1)*B
)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1) - sqrt(2)*(-(I + 1)*A + (I - 1)*B)*log(-sqrt(2)/sqrt(ta
n(d*x + c)) + 1/tan(d*x + c) + 1))*a + 8*(15*A - 15*I*B)*a/sqrt(tan(d*x + c)) + 40*(-I*A - B)*a/tan(d*x + c)^(
3/2) - 24*A*a/tan(d*x + c)^(5/2))/d

________________________________________________________________________________________

Fricas [B]  time = 1.59234, size = 1153, normalized size = 11.19 \begin{align*} -\frac{15 \,{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (-\frac{{\left (2 \,{\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} -{\left (i \, d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 15 \,{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \log \left (-\frac{{\left (2 \,{\left (A - i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} -{\left (-i \, d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, d\right )} \sqrt{\frac{{\left (4 i \, A^{2} + 8 \, A B - 4 i \, B^{2}\right )} a^{2}}{d^{2}}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{{\left (i \, A + B\right )} a}\right ) - 8 \,{\left ({\left (23 \, A - 20 i \, B\right )} a e^{\left (4 i \, d x + 4 i \, c\right )} - 6 \,{\left (4 \, A - 5 i \, B\right )} a e^{\left (2 i \, d x + 2 i \, c\right )} +{\left (13 \, A - 10 i \, B\right )} a\right )} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}}{60 \,{\left (d e^{\left (4 i \, d x + 4 i \, c\right )} - 2 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-1/60*(15*(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*log(
-(2*(A - I*B)*a*e^(2*I*d*x + 2*I*c) - (I*d*e^(2*I*d*x + 2*I*c) - I*d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2
)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 15*(d*e^(
4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*log(-(2*(A - I*B)*a*
e^(2*I*d*x + 2*I*c) - (-I*d*e^(2*I*d*x + 2*I*c) + I*d)*sqrt((4*I*A^2 + 8*A*B - 4*I*B^2)*a^2/d^2)*sqrt((I*e^(2*
I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)))*e^(-2*I*d*x - 2*I*c)/((I*A + B)*a)) - 8*((23*A - 20*I*B)*a*e^(
4*I*d*x + 4*I*c) - 6*(4*A - 5*I*B)*a*e^(2*I*d*x + 2*I*c) + (13*A - 10*I*B)*a)*sqrt((I*e^(2*I*d*x + 2*I*c) + I)
/(e^(2*I*d*x + 2*I*c) - 1)))/(d*e^(4*I*d*x + 4*I*c) - 2*d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (i \, a \tan \left (d x + c\right ) + a\right )} \cot \left (d x + c\right )^{\frac{7}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(7/2)*(a+I*a*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)*cot(d*x + c)^(7/2), x)